
Lecture-6
Lubna Ahmed

1

Input/output

Input/output

� List directed input/output

� Formatted (or user formatted) input/output

2

List directed Input/output Statements

� List directed I/O are said to be in free format.

� Free format is specified by the second asterisk in the READ(*,*) and

WRITE(*,*) statements.

Example:

WRITE(*,*) “The output values are”, var1,var2,var3WRITE(*,*) “The output values are”, var1,var2,var3

� However , the results of writing out data in free format are not

always pretty. A large number of extra spaces often appear in the

output.

� Hence we shall learn how to write out data using Formats that

specify the exact way in which the numbers should be printed.

3

Formatted Input/output Statements

� Format Statement is a non-executable statement and used in

conjunction with formatted I/O statements.

� Fortran formats are used to control the appearance of the input and

output. It has the following simple form:

(..... format edit descriptors)

� That is, a Fortran format is a pair of parenthesis that contains format

edit descriptors separated by commas.

4

Possible Ways to Prepare a Fortran Format

� Write the format as a character string and use it to replace the

second asterisk in READ(*,*) or WRITE(*,*).

READ(*,'(2I5,F10.2)') ... variables ...

READ(*,"(5F10.2)") ... variables ...

WRITE(*,'(A,I5)') ... variable and expressions ...WRITE(*,'(A,I5)') ... variable and expressions ...

WRITE(*,"(10F5.2)") ... variable and expressions ...

5

Possible Ways to Prepare a Fortran Format cont’d

� Since a format is a character string, we can declare a character

constant to hold a format string.

CHARACTER(LEN=20), PARAMETER :: FMT1 = "(I5,F10.2)”

CHARACTER(LEN=*), PARAMETER :: FMT2 = "(4I5,E14.7)”

READ(*,FMT1) ... variables ... READ(*,FMT1) ... variables ...

READ(*,FMT1) ... variables ...

WRITE(*,FMT2) ... variables and expressions ...

WRITE(*,FMT2) ... variables and expressions ...

6

Possible Ways to Prepare a Fortran Format cont’d

We can also use a character variable to hold a format. In the example

below, the character variable String is set to a format and used in

READ and WRITE statements.

CHARACTER(LEN=80) :: String

String = "(3I5, 10F8.2)" String = "(3I5, 10F8.2)"

READ(*,String) ... variables ...

WRITE(*,String) ... variables and expressions ...

7

Format Edit Descriptors

� The tedious part of using Fortran format is to master many format edit

descriptors.

� The number of positions to be used is the most important information in

an edit descriptor.

Fortran’s many Format descriptors fall into four basic categories:

� Format descriptors that describe the vertical position of a line in text

� Format descriptor that describe the horizontal position of data in a line

� Format descriptors that describe the output format of a particular value

� Format descriptors that control the repetition of portions of a FORMAT

Statement.

8

Format Edit Descriptors cont’d

Symbols used with Format descriptors

Symbol Meaning

c Column number

d the number of digits to the right of the decimal point

e the number of digits in the exponent part

9

e the number of digits in the exponent part

n Number of spaces to skip

m the minimum number of positions to be used

w Field width: the number of positions to be used

r Repeat Count: the number of times to use a descriptor or a
group of descriptors

Format Edit Descriptors cont’d

10

INTEGER Output: The I Descriptor

The Iw and Iw.m descriptors are for INTEGER output.

rIw and rIw.m

� I is for INTEGER

� w is the width of field, which indicates that an integer should

be printed with w positions.

� m indicates that at least m positions (of the w positions) must

contain digits. If the number to be printed has fewer than m

digits, leading 0s are filled. If the number has more than m

digits, m is ignored and in this case Iw.m is equivalent to Iw.

11

INTEGER Output: The I Descriptor cont’d

� r is the repetition indicator, which gives the number of times the edit

descriptor should be repeated. For example, 3I5.3 is equivalent to

I5.3, I5.3, I5.3.

� The sign of a number also needs one position. Thus, if -234 is printed,

w must be larger than or equal to 4. The sign of a positive number is

not printed.not printed.

� What if the number of positions is less than the number of digits plus

the sign? For example, what if a value of 12345 is printed with I3?

Three positions are not enough to print the value of five digits. In this

case, all w positions are filled with *'s. Therefore, if you see a

sequence of asterisks, you know your edit descriptor does not have

enough length to print a number

12

REAL Output: The F Descriptor

� F is for REAL

� w is the width of field, which indicates that a real number should be printed

with w positions.

rFw.d

� d indicates the number of digits after the decimal point.

� The fractional part may have more than d digits. In this case, the (d+1)th

digit will be rounded to the dth one

� The fractional part may have fewer than d digits. In this case, trailing zeros

will be added.

13

REAL Output: The F Descriptor cont’d

14

REAL Output: The E Descriptor

� E is for REAL numbers in exponential forms.

rEw.d

� w is the width of field, which indicates that a real number should be printed
with w positions.

� To print a number in an exponential form, it is first converted to a
normalized form s0.xxx...xxx×10sxx, where s is the sign of the number
and the exponent and x is a digit.
For example, 12.345, -12.345, 0.00123 -0.00123 are converted to
0.12345×102, -0.12345×102, 0.123×10-2 and -0.123×10-2 respectively

15

REAL Output: The E Descriptor cont’d

� If your data has an exponent larger than 99 or less than -99, Ew.d will not

be able to print it properly because there are only two positions for the

exponent (therefore, all w positions will be filled with asterisks).

rEw.dEe

exponent (therefore, all w positions will be filled with asterisks).

� w must be greater than or equal to d+7

As shown in the figure, in addition to the d positions for the normalized

number and e positions for the exponent, we need four more positions for

printing the sign in the exponent, a decimal point, a leading 0 and the

character E. Moreover, if the number is negative, a sign before the 0 is

needed. This means that w must be greater than or equal to d+e+5.

16

REAL Output: The E Descriptor cont’d

Example: In the following table, the WRITE statements use different

E edit descriptors to print the value of 3.1415926.

17

Editor Descriptor ESw.d and ESw.dEe

� Scientists write the exponential form in a slightly different way. This

ES edit descriptor is for printing a real number in scientific form,

which has a non-zero digit as the integral part. If the number is a

ESw.d and ESw.dEe

which has a non-zero digit as the integral part. If the number is a

zero, then all digits printed will be zero.

� For example, if the number is 34.5678, it has a normalized form

0.345678×102. Now shifting the decimal point to the right one

position gives 3.45678×101. The following shows the output printed

with ES12.3E3:

18

Editor Descriptor ENw.d and ENw.dEe

� Engineers write the exponential form in yet another way. In an

engineering form, the exponent is always a multiple of three, and

ENw.d and ENw.dEe

the printed number always has no more than three and at least one

non-zero digits.

� For example, suppose the given number is 1234.567. The integral

part has four digits and the exponent is zero. To convert this

number to an engineering form, the decimal point should be shifted

to the left three positions. Thus, the given number has a new form

1.234567×103.

19

LOGICAL Output: The L Descriptor

� L is for LOGICAL

� w is the width of field, which indicates that a logical value should be printed

rLw

with w positions.

� The output of a LOGICAL value is either T for .TRUE. or F for .FALSE. The

single character value is shown in the right-most position and the remaining

w-1 positions are filled with spaces. The is shown in the figure below.

20

CHARACTER Output: The A Descriptor

� A is for CHARACTER

� w is the width of field

� The output of the character string depends on the length of the character

rAw

string and the value of w.

� If w is larger than the length of the character string, all characters of the

string can be printed and are right-justified. Also, leading spaces will be

added. Example:

WRITE(*,'(A6)') "12345"

21

CHARACTER Output: The A Descriptor

� If w is less than the length of the character string, then the string is

truncated and only the left-most w positions are printed in the w positions.

Example:

WRITE(*,'(A6)') "12345678”

� If w is missing (i.e., edit descriptor A), then the value of w is assumed to be

the length of the string.

22

CHARACTER Output: The A Descriptor

CHARACTER(LEN=5) :: a = "12345"
CHARACTER :: b = "*”

23

Printer control

� The control character is not printed in the page. Instead, it provides
vertical positioning control information to the printer.

� The way Fortran prints your information is line-oriented

Printer Control
Character

Action

24

1 Skip to new page

Blank Single spacing

0 Double spacing

+ No spacing(print over previous line)

Printer control cont’d

25

Printer control cont’d

If the first character is a +,

then the printer will not

advance and print the

information on the same line.

Therefore, the information on

this line will print over the

information on the previously

printed line.

26

Horizontal Spacing

� The next n positions are skipped.

� The X edit descriptor can be used for both input and output. For

output, the next n positions are skipped and the content there is

unchanged. For input, it simply skips the n positions.

nX

unchanged. For input, it simply skips the n positions.

� Unlike edit descriptors I, F, E, L and A, the number of positions is

placed before the edit descriptor. Do not write Xn.

� Edit descriptor X cannot be used with repetition indicator .

� The X edit descriptor is only for skipping positions and does not

read and write any values.

27

Horizontal Spacing cont’d

Example:

28

This should generate an output as follows:

Tabbing

� Tc moves to position c, TLc move backward c positions, and TRc

moves forward c positions.

� Edit descriptors T, TL (Left Tab field) and TR(Right Tab field) cannot

be used with repetition indicator directly.

c, TLc and TRc

be used with repetition indicator directly.

� The T, TL and TR edit descriptors are only for tabbing and do not

read and write any values.

29

Tabbing cont’d

Example:

30

It should generate output as follows:

Vertical Spacing Control

� For Input: The current input line is skipped and the remaining

unread content on the current input line is ignored. The reading

process starts at the first position on the next input line.

� For Output: The current output line is printed and the next output

/ and r/

� For Output: The current output line is printed and the next output

item starts at the first position of a new output line.

READ(*,"(I3,5X,I5,/,/,T15,F10.0)")

is equivalent to

READ(*,"(I3,5X,I5//T15,F10.0)")

� r is equivalent to writing / r times.

31

Vertical Spacing Control cont’d

32

Grouping

� For the form of r(....), the edit descriptors within () repeat r

times.

� For example:

r () and ()

33

(1X, 3(I5, F5.2), A)

is equivalent to the following:

(1X, I5, F5.2, I5, F5.2, I5, F5.2, A)

Sign Control

� S: All subsequent numeric output is up to your compiler system.

� SP: All subsequent positive numeric output will have plus signs.

� SS: All subsequent positive numeric output will not have plus

signs. S, SP, SS can be used multiple times in the same format.

S, SP and SS

34

signs. S, SP, SS can be used multiple times in the same format.

� The effect of S, SP and SS will be applied to all subsequent

printing in the same format.

(I5, SP, I6, F6.2 / S, F5.0, SS, I4)

Sign Control cont’d

Example: Write a program which prints the values from -5 to 5. For

each value, it is converted to a REAL. Each value will be printed

with SP and SS to illustrate the result.

35

End of Lecture…

36

Class Assignment

� Write a program that for each INTEGER in the range of 1 and 10,
prints its value, square, cube, square root and the fourth root. You
should generate the output as shown below.

37

Class Assignment

� Rabbit Breeding: the Fibonacci Way
1. Start with one new-born male/female pair.
2. A new-born pair produce a male/female pair after two months.
3. Male/female pairs of age two months and older produce a male/female

pair every month. If we represent the number of male/female pairs after n
months by the variable Fn, it soon reveals that Fn takes the followingmonths by the variable Fn, it soon reveals that Fn takes the following
values:

38

Write a program that
Produces this output:
Hint: Fn = Fn_1 + Fn_2

